
CS 1112 Introduction to
Computing Using MATLAB

Instructor: Dominic Diaz

Website:
https://www.cs.cornell.edu/courses/cs111
2/2022fa/

Today: Functions

https://www.cs.cornell.edu/courses/cs1112/2022fa/
https://www.cs.cornell.edu/courses/cs1112/2022fa/

Agenda and announcements
● Last time

○ Loops, nested loops, and graphics
● This time

○ Functions
● Announcements

○ Project 2 due 9/19!
■ If you work with someone else: one person forms the group on CMS,

the other person accepts the invite, then submit your files.
■ Many office hours between now and due date (my OH 2:30 on

Monday in Gates 417)

Things to watch out for project 2
● Always start scripts with a comment describing what the code does
● Comment your code (but not excessively)
● Indent code nested inside if statements, for loops, and while loops
● Only use the input function when the documentation indicates that there is a

user-input.
○ For example, in project 2 problem 1: There should be 2 user-inputs

● Do not put semicolon at the end of if, elseif, else, for, while, end, and
function lines.

○ In other words, any lines of code that start with any of these keywords should not end with a
semicolon

k = 1; n = 10;

while k <= n

disp(k);

k = k + 1;

end

Functions

sin
(x)

rem(10, 6)

DrawDisk
(1, 2, 2

, 'y')

DrawRect(2, 3, 1, 'c')

DrawStar(7, 2, -.5, 'y')

inpu
t('I

nput
 a n

umbe
r:')

fprintf('MATLAB is cool')

disp(numCats)

max(endPt, cricitalPt) min(4,
pi)

plot(x, y, 'bo')

title('Trajectory of a golf ball')

rand

Functions
● Many built-in functions in MATLAB

○ General math: min, max, abs, rem, …
○ Trigonometry: sin, cos, tan, asin, …
○ Integer computation: floor, ceil, round, …
○ Plotting: plot, title, xlabel, ylabel, …
○ Input/output: fprintf, sprintf, disp, …
○ …

● We can add our own user-defined functions!
○ Goals for user-defined functions:

■ Should be able to specify input
■ Should have output or do something useful
■ Should be simple to use
■ Should make your scripts more manageable

Function: a group of statements that together perform a task.

● We can write our own functions (user-defined functions) to perform a specific
task

○ Example: Draw a rectangle with specified coordinates, length, width, and color. (DrawRect.m
from lecture 7.)

○ Example: Generate a random number in a specified interval (recall back to problem 2 on
project 1–randomly placing a the light source)

○ Example: Convert polar coordinates to x-y (Cartesian) coordinates

function DrawRect(a,b,L,W,c)
% Adds a rectangle to the current window. Assumes hold is on.
% The rectangle has vertices (a,b), (a+L,b), (a+L,b+W), and (a,b+W) and
color c
% where c is either an rgb vector or one of the built-in colors 'r', 'g',
% 'y', 'b', 'w', 'k', 'c', or 'm'.

x = [a a+L a+L a];
y = [b b b+W b+W];
fill(x,y,c)

How to write your own user-defined function

function [outputs] = FunctName(inputs)

Keyword (tells the
computer that the
we are defining a
function now)

Output parameter list
● Single output does not require []
● Multiple parameters are

comma-separated and enclosed in
[]

Name of the function. Should be
concise but give you an idea of
what the function does.

● If you are creating a
function file, the file name
should be the same as the
function name.

Input parameter list
enclosed in ().

● Multiple parameters
are comma-
separated

● () can be empty, i.e.
no inputs

Example of a useful user-defined function
The function definition:

function [x, y] = Polar2xy(r, theta)
% Convert polar coordinates (r, theta) to cartesian coordinates (x,y).
% theta is in degrees.
rads = theta*pi/180;
x = r*cos(rads);
y = r*sin(rads);

Using the function (in a script, the command window, or another function):

% Convert polar (r1, theta1) to Cartesian (x1, y1)
r1 = 1; theta1 = 30;
[x1, x2] = Polar2xy(r1, theta1);
plot(x1, x2, 'b*');

The function call

Function header defines how the function is called
The function definition:

function [x, y] = Polar2xy(r, theta)
% Convert polar coordinates (r, theta) to cartesian coordinates (x,y).
% theta is in degrees.
rads = theta*pi/180;
x = r*cos(rads);
y = r*sin(rads);

Using the function:

% Convert polar (r1, theta1) to Cartesian (x1, y1)
r1 = 1; theta1 = 30;
[x1, x2] = Polar2xy(r1, theta1);
plot(x1, x2, 'b*');

Inputs and outputs can have
same/different names as in function
header.

Accessing functions
For now*, if your script calls a function, make sure they are in the same directory.

*you can get around this by using the MATLAB path (but you won’t need to know this for CS 1112).

We see that drawDemo.m
calls three different
user-defined functions.
Therefore, we need those
three functions in the same
directory/folder as drawDemo.

Ex: Draw a bullseye figure with randomly placed dots
Task: draw d random dots in each of c
concentric rings (let d and c both be
user inputs). Each ring should have
“radius” 1.

Example, in the left image

d = 1000

c = 4

Helpful user-defined functions
Before we jump into solving this problem, let’s look at some user-defined functions.

function [x, y] = Polar2xy(r, theta)
% Convert polar (r, theta) to cartesian (x,y).
% theta is in degrees.

rads = theta*pi/180;
x = r*cos(rads);
y = r*sin(rads);

function DrawColorDot(x, y, color)

% Draw a dot on at position(x,y).

% In red if color=0, otherwise blue.

if (color==0)

plot(x,y,'r.','markersize',20)

else

plot(x,y,'b.','markersize',20)

end

Notes on functions:
● After the function header but

before the code, provide
comments describing what the
function does, the inputs, and the
outputs.

● Some functions have no outputs,
like the second function.

Building the algorithm
First let’s figure out how to draw one dot between radius R and R-1.

Pseudocode to plot a dot randomly within radii R and R-1:

Choose a random r between R and R-1
Choose a random angle between 0 and 360
Convert the polar coordinates to cartesian coordinates
Plot a circle

radius = rand + R-1;
theta = rand*(360);
[x, y] = Polar2xy(radius, theta);
DrawColorDot(x, y, ________)

Pseudocode to plot a dot randomly within radii R and R-1
and use color c:

Choose a random r between R and R-1
Choose a random angle between 0 and 360
Convert the polar coordinates to cartesian coordinates
Plot a circle of color c

Say we have the following functions:

function [x, y] = Polar2xy(r, theta)
% Convert polar to cartesian.
% theta is in degrees.
rads = theta*pi/180;
x = r*cos(rads);
y = r*sin(rads);

function DrawColorDot(x, y, color)

% Draw a dot on at position(x,y). In

% red if color=0, otherwise blue.

if (color==0)

plot(x,y,'r.','markersize',20)

else

plot(x,y,'b.','markersize',20)

end

Convert the pseudocode to actual code!

% Draw d random dots in each of c concentric rings
__
__

% Put dots in the area between circles with radii R and (R-1)

% Draw d dots

r = rand + R-1;
theta = rand*(2*pi);
[x, y] = Polar2xy(r, theta);
DrawColorDot(x, y, ________);

end
end

Task: draw d random dots in
each of c concentric rings (let d
and c both be user inputs).
Each circle should have radius
1. The innermost circle should
have blue dots then alternate
colors between blue and red.

% Draw d random dots in each of c concentric rings
c = input('How many concentric rings? ');
d = input('How many dots in each ring? ');

close all
figure
axis equal off
hold on

% Put dots in the area between circles with radii R and (R-1)
for R = 1:c

% Draw d dots
for dotNum = 1:d

r = rand + R-1;
theta = rand*(2*pi);
[x, y] = Polar2xy(r, theta);
DrawColorDot(x, y, rem(R,2));

end
end
hold off

% Draw d random dots in each of c concentric rings
c = input('How many concentric rings? ');
d = input('How many dots in each ring? ');

close all
figure
axis equal off
hold on

% Put dots in the area between circles with radii R and (R-1)
for R = 1:c

% Draw d dots
for dotNum = 1:d

r = rand + R;
theta = rand*(2*pi);
[x, y] = Polar2xy(r, theta);
DrawColorDot(x, y, rem(R,2));

end
end
hold off

Why rem(R, 2)?

If R = 1, rem(R,2) = 1 =>color blue
If R = 2, rem(R,2) = 0 =>color red
If R = 3, rem(R,2) = 1 =>color blue
If R = 4, rem(R,2) = 0 =>color red

function DrawColorDot(x, y, color)

% Draw a dot on at position(x,y). In

% red if color=0, otherwise blue.

if (color==0)

plot(x,y,'r.','markersize',20)

else

plot(x,y,'b.','markersize',20)

end

