CS 1112 Introduction to
Computing Using MATLAB

Instructor: Dominic Diaz

Website:
https://www.cs.cornell.edu/courses/cs111

2/2022fa/

Today: Functions

https://www.cs.cornell.edu/courses/cs1112/2022fa/
https://www.cs.cornell.edu/courses/cs1112/2022fa/

Agenda and announcements

e Lasttime
o Loops, nested loops, and graphics
e Thistime
o Functions
e Announcements
o Project 2 due 9/19!
m If you work with someone else: one person forms the group on CMS,
the other person accepts the invite, then submit your files.
m Many office hours between now and due date (my OH 2:30 on
Monday in Gates 417)

Things to watch out for project 2

Always start scripts with a comment describing what the code does
Comment your code (but not excessively)
Indent code nested inside if statements, for loops, and while loops
Only use the input function when the documentation indicates that there is a
user-input.
o For example, in project 2 problem 1: There should be 2 user-inputs
Do not put semicolon at the end of if, elseif, else, for, while, end, and

function lines.

o In other words, any lines of code that start with any of these keywords should not end with a
semicolon

k =1; n = 10;
while k <= n
disp(k);
k = k + 1;
end

Functions

Mma
X(endpt s plot(x, y, 'bo")
J l .
c1talpt) rang nin(4; pi)
e
Q
. : . . e 4o
fprintf('MATLAB is cool') #
) 6
s"/‘\k ’
- 2 1 y 1) Y) ‘_S
prawbisk(ls 2> aumoe*” disp(num©?)
(‘ 'S_(\put
1puT

Cl) B ".5.’ ry,)
title('Trajectory of a golf ball')

DrawReCt(z 3, 1

Functions
e Many built-in functions in MATLAB

General math: min, max, abs, rem, ...
Trigonometry: sin, cos, tan, asin, ...
Integer computation: floor, ceil, round, ...
Plotting: plot, title, xlabel, ylabel, ...
Input/output: fprintf, sprintf, disp, ...

o o0 O O O O

e \We can add our own user-defined functions!
o Goals for user-defined functions:
m Should be able to specify input
m Should have output or do something useful
m Should be simple to use
m Should make your scripts more manageable

Function: a group of statements that together perform a task.

e \We can write our own functions (user-defined functions) to perform a specific

task

o Example: Draw a rectangle with specified coordinates, length, width, and color. (DrawRect.m
from lecture 7.)

o Example: Generate a random number in a specified interval (recall back to problem 2 on
project 1—-randomly placing a the light source)

o Example: Convert polar coordinates to x-y (Cartesian) coordinates

function DrawRect(a,b,L,W,c)

% Adds a rectangle to the current window. Assumes hold is on.

% The rectangle has vertices (a,b), (a+L,b), (a+L,b+W), and (a,b+W) and
color c

% where c is either an rgb vector or one of the built-in colors 'r', 'g',
% 'y', 'b', 'w', 'k', 'c', or 'm'.

X [a a+L a+L a];
y = [bb b+W b+W];
fill(x,y,c)

How to write your own user-defined function

function [outputs] = FunctName(inputs)

/

Keyword (tells the
computer that the
we are defining a
function now)

Output parameter list
e Single output does not require []
e Multiple parameters are
comma-separated and enclosed in

[]

Name of the function. Should be
concise but give you an idea of
what the function does.

e |[f you are creating a
function file, the file name
should be the same as the
function name.

Input parameter list
enclosed in ().

e Multiple parameters
are comma-
separated

e ()canbeempty,i.e.
no inputs

Example of a useful user-defined function
The function definition:

function [x, y] = Polar2xy(r, theta)

% Convert polar coordinates (r, theta) to cartesian coordinates (x,y).
% theta is in degrees.

rads = theta*pi/180;

X = r*cos(rads);

y = r*sin(rads);

Using the function (in a script, the command window, or another function):

% Convert polar (rl, thetal) to Cartesian (x1, yl)

rl = 1; thetal = 30; .
[x1, x2] = Polar2xy(rl, thetal); == The function call

plot(x1l, x2, 'b*');

Function header defines how the function is called

function [x, y] = Polar2xy(r, theta)

Inputs and outputs can have
same/different names as in function
header.

[x1, x2] = Polar2xy(rl, thetal);

Accessing functions

For now?, if your script calls a function, make sure they are in the same directory.

Current Folder v B Editor - C:\Users\dad358\Documents\Websites\CS 1112\documents\lectureCodes\lec07\drawDemo.m ® x
Git - | DrawDiskm | drawDemo.m | + |
& drawDemo.m _ 1l % drawDemo (use these settings for your own graphics) o
#) DrawDisk.m o 4 close all
#) drawMoreNesteds... © z figure g P i
axis equal o on use 16411
#) drawNestedStars.m © 9
5 hold on
) DrawRect.m o 6
) DrawStar.m ° 7 DrawRect(0,0,2,2, k")
“ drawTesting.m o 8 DrawDisk(1,1,1,'m")
9 DrawStar(1,1,1,'y")
10
11 hold off % make sure to hold off i
« I »
Command Window ®
fx >>
drawDemo.m (Script) A

*you can get around this by using the MATLAB path (but you won’t need to know this for CS 1112).

Ex: Draw a bullseye figure with randomly placed dots

Task: draw d random dots in each of ¢
concentric rings (let d and c both be
user inputs). Each ring should have
“radius” 1.

Example, in the left image
d = 1000
c=4

Helpful user-defined functions

Before we jump into solving this problem, let’s look at some user-defined functions.

function [x, y] = Polar2xy(r, theta)
% Convert polar (r, theta) to cartesian (x,y).
% theta is in degrees.

Notes on functions:

e After the function header but
before the code, provide
comments describing what the
function does, the inputs, and the
outputs.

e Some functions have no outputs,
like the second function.

rads = theta*pi/180;
X = r*cos(rads);
y = r*sin(rads);

function DrawColorDot(x, y, color)
% Draw a dot on at position(x,y).
% In red if color=0, otherwise blue.
if (color==0)
plot(x,y, 'r.", 'markersize",20)
else
plot(x,y,'b."', "markersize"',20)
end

Building the algorithm

First let’s figure out how to draw one dot between radius R and R-1.
N Pseudocode to plot a dot randomly within radii R and R-1:

Choose a random r between R and R-1

Choose a random angle between 0 and 360

Convert the polar coordinates to cartesian coordinates
Plot a circle

Pseudocode to plot a dot randomly within radii R and R-1
and use color c:

Choose a random r between R and R-1

Choose a random angle between 0 and 360

Convert the polar coordinates to cartesian coordinates
Plot a circle of color ¢

Convert the pseudocode to actual code!

radius = rand + R-1;

theta = rand*(360);

[X, y] = Polar2xy(radius, theta);
DrawColorDot(x, Yy,)

Say we have the following functions:

function [x, y] = Polar2xy(r, theta)
% Convert polar to cartesian.

% theta is in degrees.

rads = theta*pi/180;

X = r*cos(rads);

y = r*sin(rads);

function DrawColorDot(x, y, color)
% Draw a dot on at position(x,y). In
% red if color=0, otherwise blue.
if (color==0)
plot(x,y, ' 'r."', 'markersize’,20)
else
plot(x,y,'b."', "'markersize’,20)
end

% Draw d random dots in each of ¢ concentric rings

% Put dots in the area between circles with radii R and (R-1)

% Draw d dots

r = rand + R-1;
theta = rand*(2*pi);
[X, y] = Polar2xy(r, theta);
DrawColorDot(x, vy,);
end
end

Task: draw d random dots in
each of ¢ concentric rings (letd
and c both be user inputs).
Each circle should have radius
1. The innermost circle should
have blue dots then alternate
colors between blue and red.

% Draw d random dots in each of c¢ concentric rings
¢ = input('How many concentric rings? ');
d = input('How many dots in each ring? ');

close all
figure

axis equal off
hold on

% Put dots in the area between circles with radii R and (R-1)
for R = 1:c
% Draw d dots
for dotNum = 1:d
r = rand + R-1;
theta = rand*(2*pi);
[X, y] = Polar2xy(r, theta);
DrawColorDot(x, y, rem(R,2));
end
end
hold off

for R = 1:cC

DrawColorDot(x, y, rem(

»2))

Why rem(R, 2)?

IfR=1, rem(R,2) = 1 =>color blue
IfR=2, rem(R,2) = @ =>colorred
IfR=3, rem(R,2) = 1 =>color blue
IfR=4, rem(R,2) = @ =>colorred

function DrawColorDot(x, y, color)
% Draw a dot on at position(x,y). In
% red if color=0, otherwise blue.
if (color==0)
plot(x,y, 'r."', 'markersize',20)
else
plot(x,y, 'b."', "'markersize’,20)
end

